您的位置:网站首页>>公司新闻
10年出口经验,保证家具质量
推荐产品
行业新闻
联系我们
联系我们

深圳麒谷发展科技有限公司

免费热线:4008-600-336

电      话:0755-86560663
手      机:13692047897
公司官网:

http://www.dobson.cn


地址:广东省深圳市南山玉泉路128号建安大院综合楼2楼

公司新闻

活性炭纤维在空气净化器中有什么作用?

发布日期:2015-01-21 10:25:15

活性炭纤维(ACF)是用天然纤维或人造有机化学纤维经过碳化制成。其主要成份由碳原子组成。碳原子主要以类似石墨微晶片、乳层堆叠的形式存在。

ACF另一引人注目的结构是具有发达的比表面积,丰富的微孔径。一般活性炭纤维(ACF)的比表面积可达1000-1600m2/g,微孔体积90%左右,其微孔孔径为10A-40A。

产品性能 :

1、吸附容量大: 对有机气体恶臭、腥臭物质(NO、NO2、SO2、H2S、NH3、CO、CO2)吸附量比颗粒和粉状活性炭大20-30倍。

对水溶液中的无机物、燃料、有机物质及重金属离子吸附量比颗粒、粉状活性炭高5-6倍。

对微生物及细菌有优良的吸附能力。(如大肠杆菌的吸附率可达94%-99%)。

对低浓度吸附质的吸附能力特别优良。如对PPM吸附仍保持很高的吸附量。而GAC吸附材料往往在低浓度吸附能力大大降低。

2、吸附速度快:对气体的吸附一般在数十秒至数分钟达到吸附平衡,比GAC高2-3个数量级。

3、脱附速度快、易再生:用120℃-150℃热空气加热10-30分钟即可完全脱附。在多次吸附过程中,仍然保持原有的吸附性能。

4、耐温性能好:在惰性气体中耐高温1000℃以上,在空气中着火点达500℃。

5、耐酸、耐碱,具有良好的导电性能和化学稳定性。

6、灰份少:它的灰份含量仅为GAC的十分之一,对回收物质的催化作用小。

活性炭纤维是性能优于活性炭的高效活性吸附材料和环保工程材料。其超过50%的碳原子位于内外表面,构筑成独特的吸附结构,被称为表面性固体。 它是由纤维状前驱体,经一定的程序炭化活化而成。较发达的比表面积和较窄的孔径分布使得它具有较快的吸附脱附速度和较大的吸附容量,且由于它可方便地加工 为毡、布、纸等不同的形状,并具有耐酸碱耐腐蚀特性,使得其一问世就得到人们广泛的关注和深入的研究。目前已在环境保护、催化、医药、军工等领域得到广泛 应用。活性炭纤维比表面积研究是非常重要的,活性炭纤维比表面积检测数据只有采用BET方法检测出来的结果才是真实可靠的,国内目前有很多仪器只能做直接 对比法的检测,现在国内也被淘汰了。目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参 看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测 试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测 试过程的失败,这会浪费测试人员很多的宝贵时间。F-Sorb 2400比表面积测试仪是真正能够实现BET法检测功能的仪器(兼备直接对比法),更重要的F-Sorb 2400比表面积测试仪是迄今为止国内唯一完全自动化智能化的比表面积检测设备,其测试结果与国际一致性很高,稳定性也很好,同时减少人为误差,提高测试 结果精确性。

  自1962年美国专利首次涉及随后美国ORNL使用活性炭纤维过滤放射性碘辐射以来,不同前驱体有机纤维及其活性炭纤维的研究和应用得到快速发 展。美国、英国、前苏联、特别是日本,是研究和使用ACF的大国,年产量近千吨。国内的ACF研究起始于80年代末期,到90年代后期陆续出现工业化装 置。大多处于实验室研究阶段。

  制造方法:前驱体原料的不同,ACF的生产工艺和产品的结构也明显不同。ACF的生产一般是将有机前驱体纤维在低温200 ℃~400 ℃下进行稳定化处理,随后进行(炭化)活化。常用的活化方法主要有:用CO2或水蒸汽的物理活化法以及用ZnCI2,H3PO,H2PO4,KOH 的化学活化法,处理温度在700 ℃~1 000 ℃间,不同的处理工艺(时间,温度,活化剂量等)对应产品具有不同的孔隙结构和性能。用作ACF前驱体的有机纤维主要有纤维素基,PAN基,酚醛基,沥青 基,聚乙烯醇基,苯乙烯/烯烃共聚物和木质素纤维等。商业化的主要是前4种。

  结构特征:活性炭纤维是一种典型的微孔炭(MPAC),被认为是“超微粒子、表面不规则的构造以及极狭小空间的组合”,直径为10 μm~30 μm。孔隙直接开口于纤维表面,超微粒子以各种方式结合在一起,形成丰富的纳米空间,形成的这些空间的大小与超微粒子处于同一个数量级,从而造就了较大的 比表面积。其含有的许多不规则结构-杂环结构或含有表面官能团的微结构,具有极大的表面能,也造就了微孔相对孔壁分子共同作用形成强大的分子场,提供了一 个吸附态分子物理和化学变化的高压体系。使得吸附质到达吸附位的扩散路径比活性炭短、驱动力大且孔径分布集中,这是造成ACF比活性炭比表面积大、吸脱附 速率快、吸附效率高的主要原因。

  功能化方法:功能化主要通过孔隙结构控制和表面化学改性来满足对特定物质的高效吸附转化。

  ACF通常适用于气相和液相低分子量分子(MW=300以下)的吸附。当吸附剂微孔大小为吸附质分子临界尺寸的两倍左右时,吸附质较容易吸附。 孔径调整的目的就是使ACF的细孔与吸附质分子尺寸相当,通常采用下列方法:1)活化工艺或活化程度的改变(至纳米级);2)在原纤维中添加金属化合物或 其它物质经炭化活化,或采用ACF添加金属化合物后再活化(中孔为主),原料纤维预先具有接近大孔的孔径(大孔);3)烃类热解在细孔壁上沉积、高温后处 理(使孔径变小)。

  表面化学改性主要改变ACF的表面酸、碱性,引入或除去某些表面官能团。经高温或经氢化处理可脱除表面含氧基团(还原);通过气相氧化和液相氧化的方法可获得酸性表面。改性需综合考虑物理结构与化学结构的影响。

文章关键词: